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 Abstract. Ackermann’s function implies the existence of an infinite spectrum of new arith-
metical operations (hyperoperations) belonging to the Grzegorczyk Hierarchy. Two of these 
hyperoperations, tetration and zeration, together with their inverses are given special atten-
tion. Tetration (power tower, or superpower) has recently been described in the scientific lit-
erature and has attracted the attention of both career and amateur mathematicians; zeration is 
less well known. However, the new arithmetical operation, called zeration, follows naturally 
from generalizing formulas used in iterative calculations of both known and new inverse op-
erations. Zeration expands our approach to mathematical concepts such as infinity and conti-
nuity and its application for describing discontinuities is shown in practical examples. The 
possibility of using tetration to represent very large numbers is outlined. Questions requiring 
further research are also raised. 
 
Mathematics Subject Classification (2000): 20k30 homomorphisms; 03D99 computability 
and recursion theory; 11A25 arithmetic functions; 11H99 computational number theory; 
68Q15 complexity classes. 

 
 
 
 
 
 

1. INTRODUCTION 
 

1.1. Algorithmic Complexity Classes. In the framework of artificial intelligence (AI) and problem 
solving sciences, algorithm efficiency is analyzed by measuring how much the duration of a proc-
ess, generated by an algorithm, grows as a function of the amount of data on which the algorithm 
itself operates. Let the amount of data (measured, for instance, in bits) be called x and the “length” 
of the process (i.e. the algorithm execution time, or the amount of process steps, or the total num-
ber of bits describing the process) be called y. Then, various levels of algorithm complexity can be 
assessed according to the  types of expressions y = f(x), as seen in problems’ complexity theory. 
Normally, if an algorithm operates on a larger number of data, the corresponding process requires 
a larger number of steps to be executed, i.e. the process length y also increases. In practice, we 
have situations such as those shown in the following plots of the y = f(x) functions.  
 
 
 
__________________________________________ 
Constantin A. Rubtsov.   pr. Valutina, d. 12 - Belgorod – Russian Federation 
Giovanni F. Romerio.    via Torino, 48 - 12037 Saluzzo (CN) - Italy 



 

 

2

2

  y = f(x) 

 
          x 
In particular, the diagram shows variations of linear type (y = x), as well as of the quadratic (y = x2) or 
cubic (y = x3) types. The diagram also shows a series of exponential (or iterated exponential) varia-
tions, growing much faster than the “power” plots. In principle, we can have the following major 
classes of variations: 

• Class   P   – The process/data plots are of type y = k x,  y = k x2,  y = k x3, …. , or of general-
ized polynomial type y = a xn + bxn-1+ cxn-2… + k. Algorithms of this type are said to belong 
to the class of polynomial type, corresponding to relatively easily solvable problems. 

• Class EXP – The process/data plots are not of the polynomial type but they can be described 
by exponential functions, such as y = exp(x). In practice, process length y can be represented 
by using the powers of 2 of the algorithm length x, such as y = 2x, or by using the powers of e. 
This class represents exponential or intrinsically complex algorithms, corresponding to the 
class of “intrinsically difficult problems”, which normally strongly resist computer solutions.  

• Class H-EXP - AI specialists have found algorithms identified by the y = 2^(2^x) plot (or bi-
exponential), or even by tri-exponential or tetra-exponential or, generally, k-exponential ex-
pressions. Some plots of this kind are indicated in the diagram. We may observe that these 
plots increase much more rapidly than any plot of polynomial or of simple exponential type. A 
detailed classification of H-EXP (hyper-exponential) algorithms could help in defining the 
ranks of intrinsical problem complexity. 

• Class 0      - A class of algorithms in which the process length (corresponding to the execution 
time) is always infinite. In this case the computer will never stop and, therefore, it will never 
deliver the solution. This is the class of “unsolvable problems”, i.e. of problems for which the 
solution, in the framework of the existing and admitted hypotheses, is considered to be “non-
existent”. 

 
1.2. Iterated exponentiations. It is interesting to note that, in order to define the subclasses of the H-
EXP class, some expressions take the form: 
(1)   y = e ^(e ^(e ^(e ^ …..(e ^ x))))    [e ^  iterated k times, on x] 
and these are outside the range of normally accepted elementary arithmetical operations, as defined in 
classical Algebra. These kinds of expressions (i.e. iterated exponentiations) have been identified, in the 
literature, as “power towers”, “superpowers” or, simply, “towers”. L. Stockmeyer and A. Chandra, of 
the Thomas Watson IBM Research Centre, have analyzed expressions of this type.  
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They also reported, in a paper published in 1989 [1], that Albert Meyer [2] proved, in 1972, that the 
S1S algorithm has a complexity greater than exponential. In particular, he has shown that the algo-
rithm deciding about the truth of a statement with length x of the S1S language has a complexity that 
increases more than the k-exponential function of x (for any k).  
 
1.3. Algorithmic Information. As clearly stated by Stephen Wolfram [3], it is generally accepted that 
the description of a piece of data can always be done with a program for reproducing it. Andrei Kol-
mogorov analyzed the problem of defining the information carried by a sequence of bits, representing 
a process, with a different approach from that of Shannon’s information theory, where the information 
contents of a signal is given by the logarithm, to the base 2, of the reciprocal of the configuration 
probability. Shannon’s “information quantity”, thus defined, supposes the existence of a communica-
tion channel, linking the Source of information with the Receiver and takes into account the probabil-
ity that the Receiver can detect the signals sent by the Source. Kolmogorov’s objective was, however, 
to try and define another “information quantity” that could possibly measure the absolute internal “or-
der” of a process, independently of any transmission channel. For this, he had the idea of connecting a 
process with the shortest possible algorithm which could reproduce it. If no such algorithm shorter 
than the process exists, then we must resort to a “random” process.  The shortest possible algorithm, 
associated with a process, is called its Algorithmic Information, which, in a way, highlights the internal 
redundancy of the process itself. Charles Bennet called it the process’ Logical Depth. It is interesting 
to note that the definition of the Algorithmic Information of a process coincides with the definition of 
the Algorithmic Complexity of the program that has generated it (see 1.1.). 
 
1.4. Ackermann’s Function (AF). Ackermann’s Function [4], a recursive function that, while Turing 
computable, grows faster than any primitive recursive functions, can be used to establish a link be-
tween classical elementary arithmetical operations (addition, multiplication, exponentiation) and to 
analyze operations such as: 
(2)   y = a ^(a ^(a ^(a ^ …..(a ^ a))))    [a ^  iterated k times, on a] 
These are rather similar to expressions (1), except for the fact that iterated exponentiation, in this case, 
always operates on the same magnitude a which is the base of the exponential. AF itself demonstrates 
the existence of an infinite series of hyperoperations, including the classical arithmetical operations, as 
well as  tower power and other iterated exponentiations, each one indexed by a positive integer value 
of a parameter s, called the hyperoperations rank. This series is known as the Grzegorczyk Hierarchy 
[3]. 
 
1.5. Ω-Mapping. The first author (C. A. Rubtsov),  while analyzing AF, had the idea of defining the 
properties of a new hyperoperation of rank zero (s = 0), i.e. with a rank lower than the rank of addi-
tion, because it appeared to be automatically implied by some AF values. This new operation was 
named the zero-rank operation” or “zeration”. The properties of zeration have been presented in pa-
per [5], concerning “New Mathematical Objects”, following some ideas presented since 1989 [6]. Pa-
per [5] analyses the properties of zeration and of the new set of numbers that it generates. This, to-
gether with the outline of the basis concepts of the  homomorphisms’ theory, expands our 
representation of the spectrum of existing mathematical objects (http://numbers.newmail.ru). Ω-
mapping formalism can be used to discover the properties of hyperoperations such as zeration and 
tetration, together with those of their inverse operations. 
 
1.6. Extension of  Tower to the Reals. The second author (G. F. Romerio) has, since 1986, been at-
tracted to the problem of analyzing the properties of the tower operation, defined within the set N of 
natural numbers, in order to extend it to the set R of real numbers. This problem is similar to that of 
extending the classical factorial operation:  

 n !   with n ∈  N  
to any number x, belonging to the set of real numbers. This question was solved by the definition of 
the Gamma Function, such as: 
     x ! = Γ(x + 1)   with x ∈  R. 
Furthermore, the solution to our problem of extending the tower operation (also called tetration) to the 
reals is also similar to the classical question of extending the validity of expression a n (n ∈  N) to  a x, 
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where we have x ∈  R. This problem has also been solved a long time ago, starting by identifying an 
expression with rational exponent, such as a ½ (with a 0 < a1/2 < a 1 ; i.e.: 1 < a1/2 < a ), with the square 
root of a ( a ).  
Unfortunately, the homologue operation, at the tower/tetration operation rank, was never given a 
meaning until now. Therefore, there is still a need, for instance, to clarify the exact meaning of  “a-
tetrated-½ ” which, incidentally, must not be confused with what we might call the “super-squareroot 
of a ” (see paragraphs 6.3 and  6.4). 
 
1.7. Objectives. The immediate objective of this study is to draw the attention of mathematicians to the 
possibility of defining new elementary functions based on the properties of hyperoperations and their 
inverses, as well as to suggest possible practical applications and strategies for future research. 
 
 

2. ITERATIVE EXTENSIONS OF TRADITIONAL ALGEBRAIC OPERATIONS  
 
2.1. Iterations of classical operations. We wish to examine the possibility of introducing an extensible 
series of algebraic operations, by using the constructive iterative application of appropriate operators, 
each one corresponding to one of the traditional arithmetical operations (addition and multiplication), 
together with exponentiation. For this purpose, let us define the following operators: 

  a + , such that: a + x = a + x   Operator a+  (Addition) 

  a × , such that:  a × x = a ×  x = a . x  Operator a×  (Multiplication) 

  ^a , such that:  ^a x = a ^  x = a x  Operator a^ (Exponentiation) 
These three operators act on the operand situated to the right and can be iterated, as follows: 

a + a + a + x = a + a +  (a + x) = a + (a + (a + x)) = a + (a + (a + x)) = a+a+a+x  

 a × a ×  a × x  = a × a ×  (a . x)   = a × (a . (a . x))     = a . (a . (a . x))      = a.a.a.x 

 ^a ^a  ^a x = ^a ^a (a ^ x)   = ^a (a ^ (a ^ x))   = a ^ (a ^ (a ^ x))   = 
xaaa  

As we know, in the first two cases (addition and multiplication), the parentheses can be removed in the 
final result, because of the associativity of the two operations. In the case of exponentiation, this can-
not be done and the order defined by the parentheses remains unaltered.  
Suppose we now apply the a +  operator, by repeated iterations, to the same numerical variable a. 
The result of each iteration of addition, which is an operation identified as the first rank in the hierar-
chy (s = 1), will be represented by multiplication, which is an operation of the second rank (s = 2): 

Rank s = 1, iterated additions, represented by  multiplications (s = 2):  
   a + a =      a . 2      
(3)   a + a + a =     a . 3  

..........................                                      ......... 
a + a + a + a + ....+ a (n times) =  a . n (a-times-n) 

We now go on to describe the second iterated operation, in which we use operator a × . This consists 
of the iteration of multiplication (s = 2), represented by exponentiation (s = 3): 
 Rank s = 2, iterated multiplications, represented by exponentiations (s = 3): 

a . a =      a ^ 2      
(4)   a . a . a =     a ^ 3  

.........................                                       ........ 
a . a . a . a .  .... . a (n times)      =  a ^ n (a-power-n) 

The iterations referred to above cover and represent the three classical algebraic operations (addition, 
multiplication and exponentiation).  
 
2.2. Tetration. However, the iteration process can be continued, by defining an additional hierarchical 
level (s = 4), which represents iterated exponentiation. In this case we get: 

Rank s = 3, iterated exponentiations, represented by a new operation called tetration (s = 4) or  
                   power tower, or tower, for which we choose operator symbol “#”: 
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a ^ a =      a # 2      
(5)   a ^ a ^ a =     a # 3  

.......... ...........                                          ........ 
a ^ a ^ a ^ a ^ ....^ a (n times) =  a # n (a-tower-n  or  a-tetrated-n)  

In both exponentiation and tetration, the associative property is not fulfilled. These operations are,        
therefore, intended to be executed with “priority to the right”.  
“Tetration” derives its name from the fact that it appears at the 4th rank in the hyperoperations hierar-
chy , in which “addition”, “multiplication” and “exponentiation” are identified by ranks 1, 2 and 3, 
respectively. The first super-exponential operation (a-tetrated-n or a-tower-n) can be represented in 
various ways, such as:  a # n = na or also as a↑↑n. The latter is derived from the representation of stan-
dard exponentiation by one arrow i.e.: a ^ n = an = a↑n, as proposed by Knut (1976), and it has the 
advantage of being applicable to all the hyperoperations with ranks > 3. The “arrows” symbolism for s 
< 3 fails. Notation na was proposed by Rucker in 1995. We shall see that the iteration process can con-
tinue, for ranks s > 4, and that we can define a series of operations (hyperoperations) with no upper 
limit to the value of the rank.  
 
2.3. Zeration. The problem of the existence of operations with a hierarchical rank s < 1, and particu-
larly for s = 0 (the zero-rank operation, or zeration) was studied by one of us [5], in 1986. Leaving the 
justification for it until a later stage, we shall at this point simply present here the scheme of this new 
operation, the iteration of which can be represented by the addition operation. The process requires the 
definition of a new operator, with rank “zero”: 

  a° , such that: a° x = a °  x  Operator a° (zeration) 
The scheme so obtained is as follows (with priority to the right): 

a °  a =      a + 2      
(6)   a °  a °  a =     a + 3  

..........................                                      ......... 
a °  a °  a °  a °  ....°  a (n times) =  a + n (a-plus-n) 

This operator a° defines a new algebraic operation, with hierarchical rank s = 0, for which the asso-
ciative property is also not fulfilled. An appropriate name for this operation is zeration.  
 
2.4. The Grzegorczyk Hierarchy. The family of operations mentioned in the previous paragraphs of 
this section (zeration, addition, multiplication, exponentiation and tetration) belong to an infinite series 
of hyperoperations, called the “Grzegorczyk Hierarchy”, named after prof. Grzegorczyk, a distin-
guished Polish philosopher of Logic (See also [7]). 
The hierarchy can be globally described by introducing a generalized hyperoperator of rank s 

sa that will operate on its right in the following scheme: 

  sa , such as: sa x = a s  x  hyper-operator of rank s:  s  

Here, s  is an infixed form of the hyper-operator of rank “s”, that generates the following scheme: 

for s=0  a s  b = a 0  b  = a ° b zeration   

  for s=1  a s  b = a  1  b  = a + b addition (sum) 

(7)  for s=2  a s  b = a 2  b  = a .  b multiplication (product) 

   for s=3  a s  b = a 3  b  = a ^ b exponentiation (power) 

  for s=4  a s  b = a 4  b  = a # b tetration (tower, super-power) 
 
We shall see that rank “s” can assume the values of all natural numbers, thus completing an infinite 
series of hyperoperations. Indeed hyperoperation “ a s  b ” could probably also be defined for nega-
tive or a “non-integer” values of rank “s”. So, we can foresee the mathematical “existence” of opera-
tions, not only with a negative “s”, but also with an exotic  rank “s = 1,5”, between addition (s = 1) and 
multiplication (s = 2), or with ranks “s = π”, or “s = e”, or even “s = - i ” (!!). But  this may well re-
quire a lot of additional research work. 
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3. ITERATION AND RECURSION  

 
3.1. Iterations. In the mathematical procedures applied to computer science and artificial intelligence 
(A.I.) there are formalisms using concepts such as iteration and recursion [11]. We intend to take this 
into account in our analysis of the problems described in the previous section. We define the m-fold 
application of function y = f(x), and we denote it as y[m] = f[m](x), the iterative application, m times, of 
function f(x) to the variable x (or m - 1 times to function f(x)). 
For instance, if:    y        = f(x)   
we have:    y[2]     = f[2](x)     = f [f(x)] 
and:     y[m]    = f[m](x)    = f [f(…..f(x))]applied m  times to x. 
It is very interesting to see, then, what happens if, by definition, we choose for f(n) a series of func-
tions Φs(n), such as: 

     Φ1(n)  = 2 + n 
     Φ2(n)  = 2  . n 
     Φ3(n)  = 2 ^ n 
     Φ4(n)  = 2 # n (iterated exponentiation, or tetration). 

 
3.2. An example of nested addition. Concerning Φ1(n) , we can easily see that, if:  

     Φ1
[1](n)    = 2 + n  = 2 . 1 + n 

we have:    Φ1
[2](n)     = 2 + (2 + n)   = 2 . 2 + n 

and:     Φ1
[3](n)    = 2 + (2 + (2 + n))  = 2 . 3 + n 

and, in general:    Φ 1
[k](n)      = ……  = 2 . k + n 

or:     Φ1
[m-1](n)  = 2 (m – 1) + n 

and, finally, for n = 2:   Φ1
[m-1](2)  = 2 (m – 1)  + 2  = 2 . m 

Therefore: 
(8)     Φ1

[m-1](2)  =  Φ2(m)  = 2  . m     
We can therefore see that the nested iteration of function Φ1(n)  = 2 + n on itself, m-1 times, produces 
(for n=2) a new function Φ2(m)  = 2  . m.  
 
3.3. An example of nested multiplication. In a similar way, we can proceed with function Φ2(n)  = 2  . 
n. 
In fact, if:    Φ2

[1](n)    = 2 . n  = 21 . n 
we have:    Φ2

[2](n)     = 2 . (2 . n)   = 22 . n 
and:     Φ2

[3](n)    = 2 . (2 . (2 . n))  = 23 . n 
and, in general:    Φ2

[k](n)      = ……  = 2k . n 
or:     Φ2

[m-1](n)  = 2m-1. n 
and, finally, for n = 2:   Φ2

[m-1](2)  = 2m-1.  2   = 2m 
In conclusion:  
(9)     Φ2

[m-1](2)  =  Φ3(m)  = 2m = 2 ^ m    
Again, the iterative application of function Φ2(n)  = 2  . n on itself, m-1 times, produces (for n=2) a 
new function Φ3(n)  = 2 ^ n. 

 
3.4 Recursive extensions. We can easily verify that it must also be: 
(10)     Φ3

[m-1](2)  =  Φ4(m)  = m2 = 2 # m    
And, as foreseen, the process can continue, as we have also previously foreseen. It is possible to put 
together these various results by writing, in general: 
(11)     Φs(n)= Φs-1

[n-1](2)      
This expression can be considered both as the result of the iterative application of an operator and as a 
recursive function, since it is a function that refers to (and operates on) itself.  
A celebrated example of a two variable recursive function is Ackermann’s Function (William Acker-
mann, 1886-1992, see [4]), which has great importance in theoretical computer sciences and is very 
relevant to the subjects we are examining in this paper. 
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4. ACKERMANN’S FUNCTION  
 
4.1. Ackermann’s function. Ackermann’s Function A(s,n) is described by the following recursive table, 
the elements of which (written in matrix “boxes”) can be built up as follows: 

 the first box of the table, with co-ordinates s=0 and n=0, contains value A(0,0) = 1; 
 all the boxes in row s=0 contain numbers obtained by stating: A(0,n) = n + 1, in other 

words, they contain values: A(0,0) = 1, A(0,1) = 2, A(0,2) = 3, etc.; 
 in row s=1, and for n ≥ 1, each box A(1,n) of the row contains a number found in column 

n of the top row (s=0), where n is equal to the contents of box A(1,n-1), i.e. at the imme-
diate left of A(1,n); e.g. the contents of box A(1,2) is equal to the content of box A(0,3) = 
4 , which is equivalent to saying that: A(1,n) = A(0,n+1); 

 for all the boxes in column n=0, we have A(s,0) = A(s-1,1), as highlighted in the table, for 
example, concerning elements A(1,0) = A(0,1) = 2; 

 in all the other boxes, as indicated for box A(2,2), we have: A(s,n) = A(s-1,(A(s,n-1)). 
 

The definition of Ackermann’s Function can be summarised as follows:     
A(0,n) = n + 1 

(12)     A(s,0) = A(s-1,1)        
A(s,n) = A(s-1,A(s,n-1)) 

 
4.2. Hyperoperations progression. When we analyze the table, we find extremely interesting structures 
in the elements contained in the various boxes. For instance, it is surprising to find the following pat-
tern: 
(13)       o    in row s=0, by definition: A(0,n) = n + 1       

o in row s=1:   A(1,n) = 2 + (n+3) – 3  = n + 2; 
o in row s=2:   A(2,n) = 2  . (n+3) – 3  = 2n + 3; 
o in row s=3:   A(3,n) = 2 ^  (n+3) – 3  = 2n+3 – 3; 
o in row s=4:   A(4,n) = 2 #  (n+3) – 3 = n+32 – 3; 
o in row s=5:   A(5,n) = 2 $  (n+3) – 3, etc.. 

With the provisional exception of row s=0, we could re-define Ackermann’s Function as follows: 
(14)     A(s,n) = 2 s (n+3) – 3      
In other words, by a change of variable, we have: 

     A(s,n-3) = 2 s  n – 3 

or:     2 s  n = A(s,n-3)  +  3 
and, remembering (10), we can also write: 
(15)     Φs(n)  = 2 s  n = A(s,n-3)  +  3 = Φs-1

[n-1](2)   

A(s,n) n=0 n=1 n=2 n=3 n=4 n=5 n=6 

s=0 A(0,0) A(0,1) A(0,2) A(0,3) A(0,4) A(0,5) A(0,6) 

 1=2°3 - 3 2=2°4 - 3 3=2°5 - 3 4=2°6 - 3 5=2°7 - 3 6=2°8 - 3 7=2°9 - 3 

s=1 A(1,0)=A(0,1) A(1,1)=A(0,2) A(1,2)=A(0,3) A(1,3)=A(0,4) A(1,4)=A(0,5) A(1,5)=A(0,6) A(1,6)=A(0,7) 

 2=2+3 - 3 3=2+4 - 3 4=2+5 - 3 5=2+6 - 3 6=2+7 - 3 7=2+8 - 3 8=2+9 - 3 

s=2 A(2,0)=A(1,1) A(2,1)=A(1,3) A(2,2)=A(1,5) A(2,3)=A(1,7) A(2,4)=A(1,9) A(2,5)=A(1,11) A(2,6)=A(1,13) 

 3=2.3 - 3 5=2.4 - 3 7=2.5 - 3 9=2.6 - 3 11=2.7 - 3 13=2.8 - 3 15=2.9 - 3 

s=3 A(3,0)=A(2,1) A(3,1)=A(2,5) A(3,2)=A(2,13) A(3,3)=A(2,29) A(3,4)=A(2,61) A(3,5)=A(2,125) A(3,6)=A(2,253) 

 5=2^3 - 3 13=2^4 - 3 29=2^5 - 3 61=2^6 - 3 125=2^7 - 3 253=2^8 - 3 509=2^9 - 3 

s=4 A(4,0)=A(3,1) A(4,1)=A(3,A(4,0)) A(4,2)=A(3,A(4,1)) A(4,3)=A(3,A(4,2)) A(4,4)=A(3,A(4,3)) A(4,5)=A(3,A(4,4)) A(4,6)=A(3,A(4,5))

 13=2#3 - 3 65.533=2#4 - 3 2#5 - 3 2#6 - 3 2#7 - 3 2#8 - 3 2#9 - 3 

s=5 A(5,0)=A(4,1) A(5,1)=A(4,A(5,0)) A(5,2)=A(4,A(5,1)) A(5,3)=A(4,A(5,2)) A(5,4)=A(4,A(5,3)) A(5,5)=A(4,A(5,4)) A(5,6)=A(4,A(5,5))

 65.533=2$3 - 3 2$4 - 3 2$5 - 3 2$6 - 3 2$7 - 3 2$8 - 3 2$9 - 3 
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This formula, verified for s>0, puts each hyperoperation 2 s  n into a binary relation with element 
A(s,n-3). of Ackermann’s Function. 

 
4.3. Zeration. The case of the values in row s=0 deserves separate consideration. In fact, to keep the 
same pattern, we should also have a similar formula in the (13) system. By putting s=0 in expression 
(14) and remembering (13) we again obtain what we have called zeration (see [5] and [6]): 

     A(0,n) = 2 0 (n+3) – 3 = n + 1  (zeration) 
  

which gives: 
(16)     2 ° (n+3) = n + 4      
and, finally: 
(17)     2 ° n = n + 1    (for: n ≥ 3) 
  
But, since we already know that: 
(18)     2 ° 2 = 2 + 2                    
and that:    n ° n = n + 2 
we can start using these expressions in order to find out the first properties of the “zeration” operation. 
 
4.4. Recursive properties. We may conclude, in fact, that zeration, addition, multiplication, exponen-
tiation, tetration (etc.) are generalized “natural” hyperoperations that belong to the class of recursive 
functions, for which we know the following relations (the first line being presented as an homo-
morphic extension of the others): 
  s = 1 Addition:  x + 0 = x ; x + (y + 1) = x ° (x + y) 

s = 2  Multiplication:  x .  0 = 0 ; x .  (y + 1) = x + (x  . y) 
 s = 3 Exponentiation:  x ^ 0 = 1 ; x ^ (y + 1) = x .  (x ^ y) 
 s = 4 Tetration:  x # 0 = 1 ; x # (y + 1) = x ^ (x # y) 
or, generally: 
(19)     x s (y + 1) = x s-1 (x s y)                   
 
4.5. The Grzegorczyk Hierarchy. Therefore, from the definition of Ackermann’s function, new arith-
metical operations automatically follow. In particular, we should like to stress the following two: 

A(0,n) = 2 °  (n+3) – 3  =      n + 1  (zeration) 
A(4,n) = 2 #  (n+3) – 3 =   n+32 – 3  (tetration) 

The terms tetration and zeration and their operator symbols (“#” and “°”) are proposed by the authors. 
W. Ackermann has actually established the existence of an infinite spectrum of arithmetical opera-
tions, sometimes referred to as the Grzegorczyk Hierarchy. Conventional mathematics notation breaks 
down at this point and something new needs to be specifically devised, as we shall see, in order to 
represent very big numbers. We shall describe in detail the tetration and zeration operations, in the 
following sections. 
 

5. TETRATION  
 
5.1. Construction of a Tetration operation. As we have seen in an elementary way in section 2, the 
“construction” principles governing operations such as multiplication and exponentiation are well 
known: 
(20)    a . n = a + a + a +…….. + a      

     |----- n times -------| 
(21)    a ^ n = a . a . a . ….….. . a      

     |----- n times ------| 
where:    n ∈  N (Set of natural numbers). 
By analogy with these formulas and recalling (5), we can write a similar formula for tetration: 
(22)    a # n = a ^(a ^ (a . …….(a  ^ a))             

     |-------- n times ---------| 
with:    n ∈  N . 
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We must however observe that both exponentiation and tetration are not commutative, i.e. that: 
(23)    a ^ n = a n ≠ n ^ a = n a             
    a # n = na  ≠ n # a = an  
We shall see that they don’t satisfy the associative property either and we can anticipate that all opera-
tions with ranks different from those of addition and multiplication have properties which are different 
from those valid for the two first basic elementary operations. 

 
5.2. Right and Left Towers. The question to be examined here is how we can represent what we can 
call the “compaction” of an operation such as:  

   c = a ^ a .  
It is a power “tower” built up by elevating a number to itself. As we have seen, we can define a new 
operation that we have called “tower” or “tetration”, that we shall write as follows: 
(24)    c = a # 2 = a ^ a = a a                           

with a:   real number 
and that we could also show as: 

    c = a # 2 = a ↑↑ 2 = 2a , to be read: “a-tower-2”. 
As we have already said, symbol a # 2 is used in this paper. It is the first thing that comes to mind, if 
we need a clear and “free” symbol. As we have also seen, symbol 2a was proposed by Rucker (1995) 
and ↑↑ was created by Knut (1976). The word tower means precisely that, but it is also inspired by an 
assonance with power, since “tower” is hierarchically following the “power” operation. The meaning 
of the word tetration has already been clarified. The result of a tetration operation such as c = a # 2 is 
evidently a real number “to the power of itself”, which gives an exponential tower at two levels. If the 
floor levels (the extension, or the height of the tower) are only two, there are no problems. When this 
is not the case, we have to devise a way of performing this operation. Indeed, given the non commuta-
tivity of exponentiation, the two following expressions are different:  

   ( ) ( )
aa a aa a≠ . 

    (Please note! - For a = 2, we exceptionally have 2 ^ (2 ^ 2) = (2 ^ 2) ^ 2 = 16, but this is only a coincidence).  
 By using the sequential notation of standard pocket calculators, we may also write: 
(25)    a ^ (a ^ a) ≠ (a ^ a) ^ a       
But the non commutativity also implies the non associativity of the operation. In order to give meaning 

to an expression such as:   z = a ^ a ^ a ^ a = 
aaaa  

we have to choose a procedural rule, otherwise the operation is not defined. We may in fact have: 
    priority to the right: z = a ^ (a ^ (a ^ a)) or, 
    priority to the left: z = ((a ^ a) ^ a) ^ a 
    (but other configurations are also possible). 
 
5.3. Definitions. As we see in the following example, starting from a power tower with any number of 
levels and with priority to the left, we finally obtain an inhomogeneous  tower, with only three levels, 
but with priority to the right. It is “inhomogeneous”, or “incomplete”, because the last exponent of the 
tower is different from a. 
This, however, is generally the case: 
since,  if (n levels):  z = ((((a ^  a) ^ a) ^ a) ^ ….) ^ a = ((((aa)a)a)….)a [n times] 
we always have: 

(26)    z = )1. . ..... [ 1. ] ( na a a a n times aa a
−− =          

with n:   positive integer number 
Which means that all the “left” homogeneous towers (with any number of levels) are collapsible to 
become “right” (inhomogeneous) towers, with only three levels. This suggest that only the “right” 
towers are actually new fundamental elementary operations, not automatically reducible to others, 
whereas all the “left” towers are to be considered as banal cases of reducible expressions. We are 
therefore justified, as shown in section 2, in going on to use an “exponential” operator that acts on its 
right, as follows:  z = ^a x = a ^ x = ax  

with a:   positive real number. 
(The of a > 0 condition is chosen for sake of simplicity  
and to stay in touch with … reality!) 
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By continuing the iteration of ^a , equivalent to the use of operator expa(…), exponential to the base 
a of operand (…), we are able to create complete homogeneous towers (with identical elements) with 
priority to the right, for instance, as in the following example (with 5 levels): 

    z = ^a ^a ^a ^a a =  a ^ (a ^ (a ^ (a ^ a))) = 
) )(( )(

aaaaa  
i,e.:    z = expa (expa (expa (expa(a)))) 
and we can agree that: 

(27)    z = expa (expa (expa (expa(a)))) = 
aaaaa                       

     (without parenthesis and with priority to the right) 
In general, for the “right” towers, the following expression: 

   (28)    z = expa ( … (expa(a))) = 
.....
a

a   [n times]          
                        |→   n times    ←| 

is not reducible. We can therefore establish that this is the true “tower”, “superpower”, or “tetration” 
operation (with priority to the right), which is shown as follows (in the case of n iterations): 
(29)    z = a # n      [a-tower-n]                       

    (with a: positive real and n: positive integer). 
And we have: 

    a: base of the tower 
    n: height of the tower or super-exponent. 

 
5.4. The super-exponential function. From expression z = x #  y, we have two main situations, depend-
ing on to which of the x, y  values is the independent variable (the other one being a parameter). We 
can have:    - z = a # y (with a > 0 and a real number, the super-exponential 
function), or  

- z = x # n (with integer n ≥ 0, the super-power or tower function).  
From expression (27), with y = m (natural), we have:  

 z(m) = expa ( … (expa(a))) = 
.....
a

a [m times] = a # m 
                          |→    m times     ←| 

we may write:   z(m+1) = 
.....
a

a [m+1 times] = a a #  m     = a # (m+1) 

and also:   z(m -1) = 
.....
a

a [m - 1 times] = loga (a # m)    = a # (m-1). 
In other words, we can say that operator expa(…) elevates the tower’s height by one unit and that op-
erator loga(…) lowers the tower’s height by one unit; i.e. we have the following important recursive 
properties: 
(30)    a # (m+1) = a a # m = a ^ (a # m)                       

a # (m -1)  = loga (a # m) 
As far as the “tetration” operation is concerned, with base a = constant, we can easily calculate the 
values of  z = a # y, for small values of y, starting from the fact that we must always have: z(2) = a # 2 
= aa.  
Therefore: 
(31)    a # 1  = a                          

    a # 2  = aa  
    a # 3  = 

aaa    … etc. 
but also:   a # 0  = loga (a # 1)  = loga a = 1  
and:    a # -1 = loga (a # 0)  = loga 1 = 0 
and, finally:   a # -2 = loga (a # -1) → - ∞. 
The fact remains that function z(y) = a # y (the super-exponential function) can be calculated only for 
integer values of y (and for y ≥ -2). The dependent variable z(y) is therefore a quantified discontinuous 
entity. Any effort to obtain something like a continuous plot faces a serious problem when it comes to 
extending tetration to real numbers. Another important matter is that all the values of z, for y > 5, are 
finite (for y finite). This is almost unbelievable, because the value that we can calculate for 2 # 5 = 2 ^ 
65.536 is already virtually unimaginable.  
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Let us think of the immensity of a number such as 10.000 # 10.000 ! This fact suggests that tetration 
could be an excellent tool for representing very large numbers (See § 7.4).    
 
5.5. The Tower function. Nevertheless, the plot of function z(x) = x # n (with n positive integer), i.e. 
the tower function with super-degree n, can easily be obtained by using a very simple pocket calcula-
tor, at least for x  ≥  0. For the values of x < 0, the dependent variable z(x) assumes complex values. 
In the next figure, we plot the values of functions  z = x # n, that can be called “super-power func-
tions”, for integer values of the super-degree parameter n = 0, 1, 2, 3, 4, 5, 6 ... and for x > 0.  
  

                                   
 
 

6. THE SUPER-ROOT  
 
6.1. Inversions. As already stated in expressions (23), exponentiation and tetration are not commuta-
tive operations, i.e.:   x ^ y = x y    ≠    y ^ x = y x  (exponentiation) 
    x # y = y x    ≠    y # x = x y   (tetration). 
Let us now compare the two above-mentioned z functions (of variables x, y) such that, by analogy 
with: 

    z = x ^  y = xy  [power or exponential] 
we have:   z = x #  y = yx  [tower or super-exponential]. 
Let us then try to “extract” the values of x and y, i.e. to find the inverse functions of z. We have: 
- in the case of the power-exponential: 
(32)    x = y z = y-rt(z) [y-th root of  z]           

y = logx(z)  [logarithm|base x of z] 
- in the case of the tower-super-exponential: 
(33)    x = y z  = y-srt(z) [y-th super-root of z]          

y = slogx(z)  [superlog|base x of z] 
Therefore, we have the following inverse functions : 
- for y = n (constant): 
(34) z = x ^  n = xn n-th power of  x  =>  x = n√z  n-th root of z                      

z = x #  n = nx n-th tower of  x  => x = n z  n-th super-root of z 

- for x = a (constant): 
(35) z = a ^  y = ay exp, base a, of y  =>  y = loga  z logarithm, base a, of z        

z = a #  y = ya superexp, base a, of y => y = sloga  z superlog, base a, of z 
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Consequently, the non-commutativity of the operations implies that there must be two different inverse 
tower operations, designated as  “super-root” and “super-log”. 
 
6.2. The Square-root. In this section we propose to investigate the possibility of finding some algo-
rithms for calculating the super-root (order n) of a number z, defined as a number x that satisfies the 
following expression: 
  x # n = z => x = n z = nth-srt z (nth-super-root) 

In particular, we shall try to solve the problem where n = 2, i.e. in the case where: 
    x # 2 = z => x = 2 z = s-sq-rt z (super-square-root) 

The analysis of this problem started in 1986 [5] with the review of an iterative formula used since an-
cient time for calculating the classical square root of a number. In fact, if z is the square of x, i.e.: 
    z = x . x = x ^ 2 = x 2 

then, x can be obtained with: 
(36)    x =sqrt z  ≈ ( p + z/p) / 2            
where number  p is a first approximated value for the square-root of z, with z > 0. The result is ob-
tained by an iterated application of the formula, by systematically stating x → p. It can be verified with 
a pocket calculator that the iterations converge very rapidly to the value x = sqrt z. This formula can be 
proved as follows. Supposing p to be an approximate solution, we shall certainly have:   
       z = x 2 = x . x = z/p . p  
In fact, a more approximate value for solution x could be obtained using the arithmetic mean between 
the two magnitudes z/p and p. After putting the arithmetic mean as the new approximate value p and 
after a certain number of iterations, we get z/p = p = x, the required value for the square-root of z. This 
iterative formula has been known for more than two thousand years and was apparently used in ancient 
Greece. 
 
6.3. The Super Square-root (First algorithm for calculating the “ssqrt”). If we consider the operations 
of immediately higher rank, i.e. the rank of “exponentiation” instead of “multiplication”, we can sup-
pose that the following expressions would be valid: 
If: z = x ^ x = x # 2 = 2 x   
then: 
(37)       x = ssqrt z ≈ √ (p . log p z)    or:     x = ssqrt z ≈ √ (p . p z )   
where p, again, is a first approximate value for x, super-square-root of z.  
The procedure is indeed similar to that used for finding the square-root of z, by increasing all the 
operations      ranks by one unit and by using the geometric, instead of the arithmetic mean. In this 
case, we observe that log p z and p z are the inverse operations of z = p ^ x  (with x = log p z) and of z 
= x ^ p  (with x = p z ), both corresponding to expression z/p, used for finding the square-root of z. 
Here, again, it can easily be verified that the application of one of the last two formulas (after repeat-
edly exchanging x → p) for the calculation of the geometric mean (of either log p z or p z  with p), 
gives a result rapidly converging to the super-square-root of z, i.e. to x = ssqrt z. Actually, formula 
(37) was tentatively admitted as a working hypothesis, by using a homo-morphical mapping between 
expressions (36) and (37). It can easily be verified that formula (37) rapidly converges, for values of 
the argument z > ≈ 1,7 ( p > ≈ 1,6). 
 
6.4. A second algorithm for calculating the ssqrt. Another algorithm for calculating the super-square 
root of a number is based on a different principle. In fact, a very important relation can be found in an 
extreme case, in which n is unlimited, i.e. where the value of n → ∞.  
Let us consider the following expression:    

(38)    z ∞ = lim
n→∞

 x # n = 
.x

xx = h(x)          

       (∞ times !) 
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We propose to examine the problem of the values of function  z ∞ = h(x) for all possible values of  
variable x (real > 0). Let us take the logarithm (base e) of z ∞ in (38): 

    ln z ∞ = ln ( lim
n→∞

 x # n) = ln 
.x

xx = 
.x

xx . ln x = h(x). ln x = ln h(x) 
          (∞ times) 

i.e.: 
(39)    ln z ∞ = h( x) . ln x = ln h(x)          
which gives:   ln x = (ln h(x))/ h(x)  = (ln z ∞ )/ z ∞ = ln (z∞ ^ (1/ z∞)) 
and, then: 
(40)    x = z z∞

∞ =  g(z∞)           
But, as we remember, from expression (38): 

z∞  = lim
n→∞

 x # n =  x # ∞ =  h(x) 

we have:   x  = g(z∞) = lim
n→∞

n z∞ = z∞
∞  

Therefore: 
(41)    z∞

∞ = z z∞
∞        

In other words, the ∞-th super-root (s = 4) of a quantity z is equal to the z-th (classical, s = 3) root of z. 
This is an important result, that deserves further careful analysis, since it appears that a similar formula 
is also valid for the other hyperoperation levels. From formula (41) it follows that, in general, we can 
write: 
    x∞ = x x        

or, that:    lim
n→∞

n x = x x  

Formula (41) allows us to calculate the value of the super-square root of a number, for z < 1.7. 
In fact, let us put:  2 x = y =>  2 y = x 
Then, by applying formula (41) to argument 1/y, we have: 
    /1 y∞  = 1/y 1/y = (1/y) y = 1 / y y = 1 / 2 y 

which implies:   ∞ (1 / 2 y) = 1 / y 
 
or, to be more precise:  lim

n→∞
[n (1 / 2 y)] = 1 / y 

i.e.:    lim
n→∞

[ n (1 /  x)] = 1 / y 

or :    y = ssqrt (x) = 1 / lim
n→∞

[ n (1 /  x)]      

and, in order to be consistent with the notation of (37), we can write: 
(42)     x = ssqrt (z) = 1 / lim

n→∞
[ n (1 /  z)]         

This is the second formula for calculating the super-square root of z (for z < 1,7). 
 
6.5. A more general formula. Let us now reconsider expression (42), that we can write as: 

(: z) #  ∞ = : ( 2 z )  (with : z = 1/z, reciprocal of z) 

which can also be written as: 2 z = 1 / [(1/z) # ∞]. 

In other words, the super-square-root of z is the reciprocal of the infinite tower of  1/z. This last for-
mula can be further developed by expressing the infinite tower of “1/z” by using function “h(1/z)”, as 
defined by expression (38), e.g. by: h(1/z) = (1/z) # ∞ 
and can be expressed as:  h(1/z) = - w[-ln(1/z)] / ln(1/z) 
where w(u) is the solution of:  u = w · e w    
and it is called is the Lambert function or Product Log (see Appendix A-06). 
Therefore we have that:   2 z = 1 / h(1/z) = - ln(1/z) / w[-ln(1/z)] 
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And, finally, by changing the variables, we obtain: 
(43)    2 x = ln(x) / w[ln(x)]  (with x > e – 1/e, x ≠ 1) 

This is the third (more general) formula can be adopted for the calculation of the super-square-root of 
number x. Condition x ≥ e – 1/e is also geometrically justified by the graphical inversion of function: 

 x = y  # 2 (y = 2 x ).  

 
 
The graph of y = 2 x  is shown in the following figure. 

 
The super-square-root of x for x < e – 1/e (0,692 201 …) involves complex solutions. The unique real 
value of ssqrt(e – 1/e) is 1/e. For e –1/e < x ≤ 1, the super-square root has two real values. For x > 1, it is 
a continuous increasing function and we have: lim ( )

x
ssqrt x

→∞
= ∞ . In particular, value w(1) = w 1 = 

1,567 143 … is the “omega constant”, obtained for w . e w = 1. For x = e, we have: 2 e = 1/w1 = 

1,763 220 … . 
 
 

7. THE SUPER-LOG 
 
7.1. The Super-logarithm. The tetration operation is only well defined, in the field of real numbers, for 
integer values of the super-exponent, greater than -2. In other words, in expression: 
(44)    z = x # y = y x = x ↑↑ y (x-tetrated-y)     
tetration is only valid for “super-exponent” y = n, with n > -2 (for n = -2, the value of z is unlimited, 
i.e.  z → - ∞). For the domain of y < -2, the estimation of z requires us to use the logarithms of nega-
tive numbers. We shall examine here the application of expression (44) to the case in which the “base” 
x is a real number a, larger than 1, i.e., for: 

 x = a, with a > 1.    
The above-mentioned expression will be transformed, in this case, as follows: 
(45)    z = a # y = y a = a ↑↑ y       
From expression (45), and taking also into account definitions (33) and supposing we know the value 
of z ,  we can extract y, as follows: 
(46)    y = slog a z   (the super-log, base a, of z)    
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The “super-log, base a , of z ” is the value, or the “height ”, of the “super-exponent ” y that should be 
assigned to number a , for obtaining number z . From expression (44) and bearing in mind its restric-
tions, we must accept that quantity y has been defined only for values of z for which y is an integer 
number > -2. But, since z is supposed to be any real number, the problem posed here is how to extend 
the validity of the super-log definition so as to eliminate this restriction, if possible.  
We shall, in particular, see that the extension of the superlog to the reals is closely connected to the 
solution of the problem of extending tetration itself to the reals (§ 7.3). 
 
7.2. Incomplete Towers. Furthermore, in the recent scientific literature, we can find expressions such 
as: 
(47)    

paz a= = a ^ (a ^ p).          
This (generalized) tetration appears as an “incomplete tower operation”, incomplete because the “last” 
exponent of the iterated exponentiation is different from base “a ”. However, this kind of expressions 
is commonly found in scientific texts concerning, for instance, problem-complexity theory, game the-
ory or in some AI developments. How can we incorporate this incomplete tower into a kind of 
generalized tetration? 
In order to investigate the possibility of doing this, let us again use the following “exponentiation” 
operator:   
(48)    ^a p = a ^ p           

and:    ^a n  p = a ^ (a ^ (a ^ (a ^ ….. p)))  with n iterations of a ^ 
Let us now suppose  that quantity p is a real number larger than 1 and smaller than a. This is often the 
case in expressions similar to what we have called incomplete towers. If this is not so, we can trans-
form these expressions into a canonical form, with 1 < p < a. 
Let us now define another new tool, the “logarithm” operator, complementary to ^a , i.e.: 

(49)    loga p = log  a p          

and:    loga
n z = log a (log a (log a (log a ….. z)))      with n iterations 

Now, if we have:  z = ^a n  p 
we could also put:  z = a # (n + q).  with: 0< q < 1   
In fact, the incomplete tower has an “extension” (its super-exponent) that must be higher than n, oth-
erwise we would have had p = 1 (q = 0), and must be less than n + 1, otherwise we would have had p 
= a (q = 1). 
In other words, we can write: 
(50)    z = ^a n  p = a # (n + q).         
But, by iteratively applying the log a operator, we also have:    

loga
n z = p = loga

n [a # (n + q)] = a # (n + q – n) 

i.e.: 
(51)    p = a #  q    with 0 < q < 1 and 1 < p < a   
    q = slog a p  for any n. 
 
7.3. Strategy for extension to the reals. Formulas (50) and (51) provide a strategy for defining a 
generalized tetration operation z = a # y (as well as a continuous super-log function), extending its 
validity to all the real values of its super-exponent argument y and, so, including the results of the 
incomplete tower operation.  Once a value for p is chosen, depending upon the canonical form of the 
incomplete tower, variable q is calculated as the super-log, base a, of p. Knowing p and q, if they can 
be estimated, would  therefore be essential for the extension of tetration to the reals. Recalling the 
tetration expression z = a # y, variable p will be used to define the value of z and variable q will fix the 
y coordinate.  
The problem is therefore to calculate q as the super-log, base a, of a quantity p (with 1 < p < a), bear-
ing in mind that the result of the operation for q should be such that 0 < q < 1.     
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In some cases these difficult calculations (assuming that they are actually possible) are not necessary, 
as in the following examples of super-logs, base 2, concerning certain known integer quantities: 
    slog 2  16  = 3  because: 2 # 3 = 16 
    slog 2  65.536   = 4  because: 2 # 4 = 65.536 
However, there is the further possibility of simply indicating the super-exponent extension, without 
actually performing the calculation of the non integer value of the super-exponent n + q of a tower, or 
of a super-log, i.e. by exactly estimating the value of q (with n integer and  0 < q < 1). This can be 
done, very precisely, by using an operator that would merely highlight the value of p (with 1 < p < a). 
This operator is the so-called “concatenation operator”, from now on shown as an asterisk (*), with 
reference to the second formula of the (49) set and to (50), as follows: 
(52)    ^a n  p = (a # n) * p = a # (n + q).         
Formula (52) shows an incomplete tower built up from iterated exponentiations of a number a , on 
itself, and terminated by a last exponent (the super-exponent extension) equal to p. In other words: 
    (a # n) * p = a ^ (a ^ (a ^ (a ^ ….. p))) 
or:    (a # n) * p = a ^ a ^ a ^ …… ^ p   
    (with n times a and … priority to the right!) 
 
7.4. Tetradic Representation of numbers. The few examples shown in Appendix A-03, are sufficient to 
give an idea of how tetration can be used to represent very big numbers in what we could call a “Tet-
radic Representation”. D. W. Lozier and P. R. Turner have published papers ([8], [9], [10])describing 
a number format called Symmetric Level-Index (SLI), in which numbers are stored in the form: 

         N = e ^ (e ^ …(e ^ p))= 
..
P

ee ,  
where p is a fraction from 0,000 to 0,999... and there are as many e's as necessary.  
For example:    10  = e ^ (e ^ 0,834 032 ...)  = 2 e * 0,834 032 … 

143   = e ^ (e ^ (e ^ 0,471 239 …) = 3 e * 0,471 239 … 
The advantage of this proposed system is that there will not be any computing overflow or underflow 
if we perform a finite number of operations such as  + - × and /.  In one of their articles, Lozier and 
Turner proposed a format that uses a 3-bit level field with 2 “sign” bits and the remaining bits (59, if it 
is a 64-bit word) for the fraction p. This lets us represent numbers as high as the number represented 
by a tower of seven e’s. This is the highest known number that can be handled by a computer number-
representation system. However, there is also a computing software called “Hypercalc” that goes even 
higher. 

8. ZERATION  
 

8.1. Homomorphisms of inverse operations. In section 2 we introduced zeration, the new operation 
with a rank lower than that addition, in the hyperoperation hierarchy. The basic characteristics of such 
operation are described in formulas (16), (17) and (18) and should be consistent with table (6). This 
means that we must have: 

 -    from (6):  a ° a =  a + 2      
     a ° a ° … ° a (n times) =  a + n 

- from (17):  2 ° a =  a + 1    (for a > 2) 
In order to discover the properties that zeration must have, for it to be compatible with known opera-
tions, let us consider expression (42): 
(53)    lim

n→∞

n z =  z z   [= g(z)]             

This formula can easily be compared with similar expressions used in other mathematical fields, such 
as: 
(54)    lim

n→∞

n z  =  z / z  [= 1]             

and:    lim
n→∞

z / n =  z – z [= 0] 

This comparison is made because all the (53) and (54) expressions involve the inverse operations (of 
the “root” type) of the homologue hyperoperations of three pairs of contiguous ranks (s=4, s=3), (s=3, 
s=2), (s=2, s=1). Therefore, as a working hypothesis, it can be accepted that an equivalent formula 
might be valid involving  inverse operations of the (s=1, s=0) rank pair.  
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Indeed, the inverse operations, of the “root” type (left-inverse operations) of the hyperoperations of 
ranks 4, 3, 2, 1 and 0 can be shown as follows: 
 
(55)  s = 4   z = x # n  =>  x = n z            

  s = 3  z = x ^ n  =>  x = n z  
  s = 2  z = x  . n  =>  x = z / n 
  s = 1  z = x + n  =>  x = z - n 
  s = 0  z = x ° n  =>  x = z ∆ n 
 
In the last line, we implicitly defined the inverse operation of zeration, indicated with the “Delta” op-
erator.  
First of all, we observe that expressions (53) and (54) imply the calculations of “ lim

n→∞
x ” and, then, that 

in expression (54) the same calculation, for the rank s=0, is not there. In other words (and respecting 
the homomorphic mappings) we should have: 
(56)    lim

n→∞
z - n =  z ∆ z [= - ∞]             

Expression (56) means, if it is acceptable, that “- ∞” should operate as the unit element for the zeration 
operation, i.e. we should have: 
    a . 1       = a 
    a + 0      = a 
(57)    a °( - ∞) = a   (unit element)           
We must observe that, if we have x =  z ∆ z = - ∞, then we must also have  z ° (- ∞) = z , i.e. quantity - 
∞ indeed acts as the unit element for the zeration operation. 
 
8.2. Homomorphisms of algorithms. At this point, let us recall the formulas used to calculate, by itera-
tive attempts, the super-square root and the square root of a number (36 and 37). 
From:    z =   x ^ x =  2 x 
we have (from 37):  x =  ssqrt z   ≈   √ (p . log p  z)       [with x → p], 
or:         x =  ssqrt z   ≈   √ (p . p z )   [with x → p]. 
Also, from:   z =   x . x =  x 2 

we have (from 36):  x =  sqrt z     ≈   ( p + z/p) / 2   [with x → p]. 
As we have already noted, formulas (37) and (36), the validity of which we can verify, are linked to-
gether through a homomorphic mapping that relates operations of contiguous ranks, by decreasing 
their rank by one unit. In fact, tetration corresponds to exponentiation, multiplication to addition and, 
as far as the inverse operations are concerned, logarithm and root correspond to the division operation. 
At this point, we can tentatively apply the same mapping model, by decreasing the operations rank by 
one unit (with sqrt corresponding to ½, addition to zeration, division to subtraction), and so obtaining: 
from:    z =  x + x = x . 2 
by analogy with (37, 36), if z is an even integer number, the following formula is valid:  
(58)                x =  z / 2        ≈   (p ° (z – p)) – 2   [with x → p].             
    with p∈Z (Z: set of integers) 
By a change of variables (x-p ↔  p), we can assume that the following relation is also verified: 
    x =  z / 2        ≈   ((z – p) ° p) – 2  
and conclude that, within the validity of (58) zeration must be commutative. However, it is not asso-
ciative. 
 
8.3. Properties of Zeration. We can therefore put together the operational properties that, in our work-
ing hypothesis, should be satisfied by zeration, grouped into a new set of formulas: 
(59)  - from (6):  a ° a =  a + 2                     

     a ° a ° ... ° a (n times) =  a + n 
- from (17):  2 ° a =  a + 1    (for a > 2) 

  - from (58):  a ° b =  b ° a    (commutativity) 
-  therefore:  a ° 2 =  a + 1    (for a > 2) 

  - from (57):  a ° (- ∞) =  a    (- ∞: unit element) 
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We must also remember expression (19), for s=1: 
    x + (y + 1) = x ° (x + y)   (y > 0) 
and, by putting x = a and remembering (59): 

  a ° (a + y) = (a + y) ° a = a + y + 1 = (a + y) + 1   
for any y, by putting a + y = d > a, we must have:      
     a ° d = d ° a  = d + 1   (d > a)  
  
From these formulas we conclude that: 
(60)    a ° b = max (a,b) +1   (for a ≠ b)              
and:    a ° b = a + 2 = b + 2   (for a = b) 
and:    a ° (- ∞) = (- ∞) ° a = a 
 
In conclusion, the properties of zeration (a ° b) should be those shown in the following table (a ° b = b 
° a):   
(61)                                  

   a ° b = a + 1  for: a > b 
  a ° b = b + 1  for: a < b 

   a ° b = a + 2 = b + 2 for: a = b 
   a ° b = a   for: b = - ∞ 
   a ° b = b  for: a = - ∞ 

8.4. Graph of a Zeration function. As an example, the graph of a zeration function, defined as:  
y(x) = a ° x = x ° a 

can be shown, for a = 2, in the diagram of the next figure (y = 2 ° x). 
The diagram shows the following characteristics of the zeration plot: 

• the zeration graph shows a constant branch, y = 3, for x < 2. In the general case, i.e. for y = a ° 
x, this branch is y = a + 1, for x < a;  

• the zeration graph is linear (with a 45° slope), y =  x + 1, for x > 2. In the general case, if we 
put y = a ° x, there is a second branch,  y = x + 1, for x  > a, with a discontinuity in the tangent 
in x = a; 

• there is a discontinuity of “y”, for the value x = 2, where we have y = 2 + 2 = 4.  
In general, for y = a ° x, the value of “y” for x = a  is  y = a + 2 and the limit of “y”, for x → a, 
(i.e.: 
y = a + 1), is different from y(a) =  a + 2; 

• the y = x + 1 straight line is a characteristic of all the zeration operations of type y = a ° x = x 
° a, disregarding the value that constant “a” can assume; it could be considered as the “sup-
port” straight line for all the zeration functions, defining the second branch of all the graphs 
(the first branch is defined by the value of the constant “a”); 

• the value of y = a ° x, for x = - ∞, i.e. y = a ° (- ∞), is another discontinuity of the zeration 
function, not shown by the graph, since we have: y = a ° (- ∞) = a (instead of a  + 1), and  (- 
∞) ° x = x (instead of x + 1). This fact, as derived from Rubtsov’s demonstrations (see [5],[6]), 
must be carefully emphasized. 

In conclusion, the zeration function (y = a ° x, with “a”: real constant), apart from the discontinuity of 
tangent, is characterised by two other major value discontinuities: 

-   for x =    a  where y jumps up by one unit; 
-   for x = - ∞  where y jumps down by one unit. 
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The zeration graph (y = a ° x = x ° a) takes the form of a “broken” straight line, with a strong 
discontinuity at point x = a. 

 
 
 

9. PRACTICAL APPLICATIONS OF ZERATION  
 

9.1. Discontinuities. In the physical and technical fields, the majority of analyzed events are connected 
with modifications to the internal structure of a subject of research (submitted to the attention of an 
observer) and, as a corollary, with modifications to functional relations of the subject with its envi-
ronment. In most cases these modifications involve sudden changes in the measured physical magni-
tudes. Modern mathematical methods are not perfectly suitable for describing digital processes. As a 
rule, discontinuous functions, impulse and step functions are approximated by Stieltjes integrals, Fou-
rier series, generalized “by functions” and “differentials”, as defined in the framework of the Laurentz 
theory.  
Use is also made of various linearization models, spline approximations, etc., to describe these proc-
esses. However, all procedures for adapting such mathematical models still require rigorous demon-
stration [21]. But, in some cases, we need to use operations that allow us to express all the segments of 
a “broken” linear, or discontinuous, process with a single function. Among the existing tools, particu-
larly used in digital signal analysis, there are the well-known Dirac’s impulse function and Heaviside’s 
unitary step function, which, however, are not defined by means of elementary operations. In the fol-
lowing paragraphs, we shall see how it is possible to introduce, in an elementary and logical way and 
without having to rely on a merely “ad-hoc” definition, a set of such functions, once zeration is ac-
cepted as one of the elementary hyperoperations. 
 
9.2. The Step function. Heaviside’s unitary step function z = H(x) is defined as follows: 

z = H(x) = 0  for: x < 0 
z = H(x) = 1  for: x ≥ 0 

Function H(x) is a well known tool used in digital circuit analysis and it has a very simple, continuous 
and regular Laplace transform, function 1 / p:  

    
0

( ) 1/pxe H x dx p
∞

− =∫   (p: complex variable) 

In order to see how zeration can allow us to avoid an “ad-hoc” definition of H(x), let us consider ex-
pressions (60) and (61), re-interpreted as follows, where an independent variable x is supposed to be 
“zerated to” a constant, real number, a: 
    x °  a = max (x, a) + 1    if.  x ≠ a 
    x °  a = max (x, a) + 2   if :  x = a.     
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We can then re-define Heaviside’s function H(x-a), as follows: 
(62)    H(x – a)  =  Sign((x ° a) – (a + 1)) 
where Sign(…) is an operation that evaluates the sign of the operand (…) and gives, as a result, the 
values +1 or –1, according to whether the operand is positive or negative.  
The graph of z = c · H(x – a) is shown in the following figure: 

 
Function H(x - a) is also called the “unitary step function” and it is also written as follows: 
    H(x – a) =Step(x, a) = On (x;a)  (see also [6]) 
The link between Heaviside’s function H(x-a) and Dirac’s function δ(x - a) is given by the following 
formula: 

    ( ) ( )
x

H x a x a dxδ
−∞

− = −∫  

9.3. Other examples. The use of zeration also allows us to introduce a very peculiar function, having a 
unique single value for x = a. For this, let us start by defining the following auxiliary function, also 
implicitly appearing in paragraph 9.2, in the definition of H(x – a): 
    xsu(x - a)   = (x °  a) - (a + 1) 
we then have:   xsu(x - a)   = 0 ;  for: x < a 
    xsu(x - a)   = 1;   for: x = a 
    xsu(x - a)   = x – a;  for:  x > a 
We can now define function Spnt(x - a) as follows: 
(63)    Spnt(x - a) = xsu(x - a) · [xsu(x - a) – (x - a)] 
And we have:   Spnt(x – a) = 0   for: x < a 
    Spnt(x – a) = 1   for: x = a 
    Spnt(x – a) = 0   for: x > a 
Function Spnt(x - a), the “unitary single point function”, has the characteristic of always being equal to 
zero, except for x = a, where its value is 1 and where it describes a single point at the distance “1 ” 
from the “x ” axis. Function z = c · Spnt(x - a) is the same as function “- Gas(x;a;c) ”, as defined in 
[5].  
 
Let us now reconsider the following auxiliary function: 
    z = xsu(x - a) = (x °  a) - (a + 1). 
As we know, it is characterized by a single point discontinuity, for x = a, and we have: 
    z(a) = 1 
    lim ( ) 0

x a
z x

→
= . 

We can eliminate the value discontinuity, at x = a, by defining a new function z = Rmp(x – a), such as: 
(64)    Rmp(x – a) = xsu(x – a) – Spnt(x – a) 
and we have: 
    Rmp(x – a) = 0   for: x ≤ a 
    Rmp(x – a) = x – a  for: x > a. 
Function Rmp(x – a) can be called the “ramp function”. It is a continuous function, a broken straight-
line with a tangent discontinuity at x = a. 
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9.4. New elementary functions. The set of functions such as: 
    H(x – a) the unitary step function 
    Spnt(x – a) the unitary single point function, and 
    Rmp(x – a) the ramp function, 
defined only using the new zeration operation, can be considered as a set of new elementary functions, 
the composition of which would be useful to describe discontinuous functions or continuous functions 
with tangent discontinuities. The following relations are also valid: 

    ( ) ( )
x

x a dx H x aδ
−∞

− = −∫  

    ( ) ( )
x

H x a dx Rmp x a
−∞

− = −∫  . 

From the previous relations, we could say that: 

    ( ) [ ( )]dH x a Rmp x a
dx

− = −  

to which some authors [19] “dare” also to add: 

    ( ) [ ( )]dx a H x a
dx

δ − = −  

Function Spnt(x – a) is not directly connected with δ(x – a), that has a more elaborate definition. It can 
however be used to extract a single value out of a function f(x), since we have: 
    f(x) · Spnt(x – a) = f(a). 

But we also have:  ( ) ( ) ( )
x

x a f x dx f aδ
−∞

− =∫  

and this fact also suggests the need for some additional research. 
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10. CONCLUSIONS 
 

10.1. Zeration. The inclusion of zeration among the set of basic arithmetical operations is based on the 
following facts: 

1. Zeration follows naturally from generalization of the formulas used for iterative calculation of 
the results of both known and new inverse arithmetical operations. In particular, we have: 

 (by repeated iteration of: x → p): 
z =   x ^ x =  2 x  => x =  ssqrt z    ≈   √ (p . log p  z)     (z ≥ ≈ 1,7;  p ≥ 1,6) 
z =   x . x  =  x 2   => x =  sqrt z     ≈   ( p + z / p) / 2   
z =   x + x = x .2 => x =  z / 2       ≈   ( p °(z - p)) -2   (z even∈  Z; p∈  Z ). 

      2.  Zeration also follows from analysis of common invariant formulas (see [5], § 2.2]. 
      3. Zeration implicitly follows from Ackermann's functions. 

4.  Zeration is immediately connected to addition and, being its predecessor in the hyperopera-
tions hierarchy, it defines its underlying mathematical structure, i.e.: 

                              [i.e.: a °  a °  a °  a °  ....°  a (n times) =  a + n (a-plus-n)]. 
5. Zeration is useful for the exact description of functions plotted as “broken” lines, i.e. by means 

of  
curves that have tangent discontinuity. Such plots are very commonly found in the modeling 
analysis of digital circuits and in quantum mechanics, but also in the study of ordinary classical 
physical systems.   

6. Zeration (and its derived operations and functions) establishes a kind of bridge between dis-
crete and  

 continuous functions, as shown in the example of the graph of y = 2 ° x (see § 8.4, 9.1 and 
9.2); it  
 can be used for naturally introducing a set of elementary discontinuous functions, such as H(x 
– a),  
 Spnt(x – a) and Rmp(x – a), without the need for any additional “ad-hoc” definitions. 
7.  Zeration is commutative, but not associative. 

 
10.2. Tetration. Similarly, the tetration operation (s = 4) and the other hyperoperations for values of 
the rank s > 4 may considerably expand the ability of mathematics to solve practical problems. In par-
ticular, tetration, which is neither commutative nor associative, could make available the means for: 

1. Providing specialists in artificial intelligence (AI) with a tool for very concise assessments re-
lating to problem complexity levels for non polynomial (NP) and, especially, for hyperexpo-
nential problems (H-EXP), by using expressions such as: 

            (65)  e ^ (e ^ (e ^ …… ^ t)) = n e * t.     
2. Expressing very large numbers in a very compact way, by using tetradic representation (see 

Appendix A-03), or the similar Level Index representation (LI), such as  N = n a * p, thus 
avoiding any computing overflow, when handling extremely large numerical data . A number 
N would be represented as N = n a * p, where n is the super-exponent of the tetration and p is 
the super-exponent extension [10]. 

 
10.2. Fields for further research. Problems remaining for further investigations are those concerning: 

• the extension of hyperoperations to the whole range of relative integer numbers (i.e. also to 
negative integers, see also Appendix A-04);  

• the full extension of such operations to the field of real numbers (including rational numbers, 
as well as positive and negative irrational and transcendent numbers) and, possibly, to the field 
of complex numbers. The extension to the reals would mean writing: 
(66)  n a * p = n+q  a (with: 0 < q < 1). 

Concerning the problem of fully extending tetration to the “reals” (real numbers), so far not com-
pletely solved, we can then make the following observations. The possibility of using tetradic repre-
sentation, as shown in paragraphs 7.3 and 7.4, as well as in Appendix A-03, suggests that this is pos-
sible and it should remain, therefore, one of the main subjects for research in this sector.  
The problem will be finally solved when we are be able to find an algorithm for obtaining the superlog 
of a number, perhaps using iterative formulas (see also the attempts of Russel and Nelson, as shown in 
Appendix A-08). 



 

 

23

23

APPENDICES 
 
A-01 – Values of a # 2. Now, within the validity limits of expression loga a = 1, we can establish that all the possible plots of 
function z(y) = a # y will pass through points (y = 0, z = 1) and (y = -1, z = 0). For instance, for a = 2 we  have: 

    2 # -2  =     - ∞                        
    2 # -1   =          0 
    2 #  0 =          1 
    2 #  1 =          2 
    2 #  2  =            4   
    2 #  3   =        16 
    2 #  4  =            65.536 
    2 #  5 =      2 ^ 65.536    

  ………………….. 
 
A-02 – Values of the super-squareroot. By applying formula (37) we obtain, for example: 

  ssqrt (1)   =  1 
    ssqrt (2)  =  1,559 610 … 
    ssqrt (3)   =  1,825 455 … 
    ssqrt (4)   =  2 
    ssqrt (27)  =  3 
    ssqrt (100)  =  3,597 285 … 
    ssqrt (1000)  =  4,555 537 … 
    …………  ……………. 

 
A-03- Tetradic representation of large numbers. Towards 1940, the mathematician Edward Kasner asked his nine-year-old 
nephew to name an enormous number such as 10 100, and his nephew invented the name googol. The same Kasner, sometime 
later, named 10 googol with the name googolplex. We give some examples below of very large numbers represented by using 
tetration (bases a = 2 or a = 10), completed by a super-exponent extension p, with 1 < p < a:  
 -   65.536 = 2 # 4        =  4 2 

-   the Avogadro’s constant = 6,022 × 10 23      =  4 2* 1,409 361 
-   1 googol = 10 100        =  4 2* 1,616 471 
-   max precision of TI-85 and TI-92 calculators = 9,999 × 10 999   =  4 2* 1,827 073 
-   2 ^ 65.536 = 2 # 5       =  5 2 
-   max precision of the “Mathematica” software = 1,440 × 10 369 693 099  =  5 2* 1,200 088 
-   1 googolplex = 10 googol = 3 10 * 2      =  5 2* 1,617 078 
-   4 $ 2 = 4 # 4         =  5 2* 1,664 449 

 
A-04- Extension of tetration to negative integers.  Concerning extension of tetration to the negative integers (or to the set of 
the relative numbers Z), let us start by recalling the following definitions (valid for n ∈  N, i.e. positive integer): 
 a °  a °  a °  a °  ....°  a (n times)  = a + n (a-plus-n)         
 a + a + a + a + ....+ a (n times)    = a . n (a-times-n) 
 a . a . a . a .  .... . a (n times)         = a ^ n (a-power-n) 
 a ^ a ^ a ^ a ^ ....^ a (n times)    = a # n (a-tower-n)  
Then, let us consider what happens when n decreases, passing through zero, in one of the hyperoperations (for instance addi-
tion, implying, for negative values of n, iterated subtractions): 
 a + a    = a . 2         
 a    =  a . 1 
 a – a    =  a . 0 
 a – a – a       =  a . (- 1)  
 a – a – a – a    =  a . (- 2) 
In other words, when n decreases passing through zero, to formula: 
                          a + a + a + a + ....+ a (n times)         =  a . n (a-times-n) [for n > 0] 
we have to substitute formula: 
 a – a – a – a – .... – a (2 - n times)                =  a . n (a-times-n) [for n ≤ 0] 
Similar formulas can be provided for all the ranks, for calculating the extension of hyperoperations to the negative integer 
values of n. In this case (for n = 0, -1, -2, ...) we obtain 
(67) a – a – a – a –  .... – a           (2 – n times a)         =  a . n (a-times-n)        
 ((((a / a) / a) / a)/  ....) / a      (2 – n times a)         =  a ^ n (a-power-n) 
 loga (loga…. loga(loga a))      (2 – n times a)         =  a # n (a-tower-n)  
This is the starting point for any further research in this area, see [5] and [6]. We may also observe that in the first line the 
parentheses are not necessary and that, due to the “modus operandi” of the respective inverse operations, for the second and 
third line we must adopt priority to the left and to the right, respectively. From the third expression in (67), it is easy to calcu-
late the values of a tower operation, for negative super-exponents.  
For example, for a > 1, we have (2 – n is the number of a’s): 
(68)   0  a = log  a  a =  1     [n =  0, 2 – n = 2]        
   -1 a = log  a (log a a) = loga 1 = 0   [n = -1, 2 – n = 3] 
   -2 a = log  a (log a (log a a)) = loga 0 = - ∞   [n = -2, 2 – n = 4] 
   -3 a = log  a (log a (log a (log a a ))) = loga ( - ∞)  [n = -3, 2 – n = 5] 
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The results of the research, for n ≤ - 3, is given in [5]. In the same paper, examples of crucial relations are also given, e. g.:

      (:a) # (+ ∞) = : ( 2 a )  [with: :a = 1 / a]        

A-05 – Delta Numbers . Let us now designate as s  the operator indicating the inverse of a commutative hyperoperation 

s , with rank s. From equation:   x s  a = ε s  [ε s : unit element of operation s ] 

it follows that:    x =  ε s s  a  [x : inverse element of a, in respect of ε s] 

that we could write as:   x = s  a  [implying the presence of ε s, before s ] 
For example:   s=2  x .  a =    1 =>  x =    1 / a      =  : a  ε 2 =    1       

s=1  x + a =    0 =>  x =   0 – a      =  - a  ε 1 =    0 
   s=0  x °  a = - ∞  =>  x = - ∞∆ a     = ∆ a  ε 0 = - ∞ 
With a ∈  R+ (a  real > 0), - a ∈  R – (a  real < 0), : a ∈  R f (: a  real, inverse of a). Similarly, the set of numbers {∆ a} = R∆ 
, where “∆” stands for the operator of the inverse of zeration, can be considered as a new branch of numbers, corresponding 
to the logarithms of negative numbers. The definitions, axioms and theorems concerning these new “Delta Numbers” are 
presented in [5], where it is also shown that the following formula is valid:  
(69)     b ∆ a = - (b a)  [with a, b ∈  R]           
 
In order to justify the relationship between delta numbers and logarithms of negative numbers, which is outside of the scope 
of the present paper, we should simply remember that [5] also shows that a particular “rule of signs” is verified, concerning 
the “+” and “∆” operators: 
(70)     a + (∆b) = ∆(a + b) 
similar to:    a  ·  (-b)  = - (a  ·  b). 
Actually, from (69) we have that:  - (b a) = b ∆ a    
but we know that:    : (b a) = b – a   (: b a  = 1 / b a). 
Now, we also know that:   [: (b a)]· [- (b a)]  = -1 
which implies that:    [b – a ]· [b ∆ a ] = -1. 
But, remembering (70) we have:  b ^ [- a + (∆a)] = b ^ [∆(- a + a)] = b ∆ 0 = -1 
and, therefore:    ∆ 0 = log b (-1)   (with: b ∈R,  b ≠ 0) 
But, we can write:    log b (-1) + log b (b a) = log b [-(b a)] = log b (b ∆ a) = ∆ a 
which means that:    ∆ 0 + a = ∆ a 
If we now consider that:   log b [- (b ^ log b a)] = log b [b ^ (∆ log b a)] = ∆ log b a 
we are also allowed to write:   log b (- a) = ∆ log b  a . 
This shows that “Delta Numbers” can be put in correspondence with the logarithms of negative numbers, which have multi-
ple complex values. 
 
As we have seen, in expression   z = x # y = y x = x ↑↑ y (x-tetrated-y) 
tetration is defined only for “super-exponent”  y = n, with n > -2 (for n = -2, we have  z → - ∞). It has also been demon-
strated by (30) that the extension of tetration to negative values of n (for n < - 2) will also involve logarithms of negative 
numbers and, consequently, might also be approached by using Delta Numbers. 
 
A-06. Asymptotic values of the super-exponential function. Concerning the super-exponential function: 
     z =  x # y  [with x = a > 0, constant parameter] 
it is important to observe that z is limited or unlimited (for y → + ∞) depending on the constant values given to the argument 
x = a. In fact, from expression (40) of the “∞-th super-root of z∞”: 

     x  = z z∞
∞ =  g(z∞)    =  z∞

∞             

we can determine, for each x = a, the corresponding asymptotic value of z (called z∞) and assumed to be obtained as: 
      z∞ = lim

y→∞
(a # y) 

Therefore, the study of function:  

(71)   x = g(z) = z ^ (1/z) = z z           

is of extreme importance. The graph of this function is as follows (Fig. A1). Function h(x) = w(-lnx)/(-lnx) is obtained by 
studying the Lambert Function w(y), which is the inverse of function y = w e w, also called, in the scientific literature, “Pro-
ductLog” [3][7].   
Fig. A2  shows the inverse function (corresponding to the infinite tower of x): 
(72)     z = h(x) =  - w(- ln x)/ ln x  = ∞ x    
Concerning g(z), we can say that:   

0
lim ( ) 0
z

g z
→+

=  

and that:  max g(z)  = g(e)   = 1 / ee =  1,444 667 861 …  for:    z     =  e   =  2,718 281 829 
…  
and, also, that: lim ( ) 1

z
g z

→+∞
= . 
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From fig A2, we could conclude that the “infinite towers”, represented by function z = h(x) = x # ∞ , seem to assume limited 
values only for 0 < x < g(e) and that, outside this range of x, the values of z = x # ∞  are unlimited. Function h(x),    given by 

the (71), is the inverse function of x = g(z) = zz z∞ =  , described by (70), for  x < g(e) = e e .  

                 
                                Fig. A1                                                                          Fig. A2 
This can be demonstrated as follows. Let us consider the following function, that could be called (but there is no general 
agreement about this) “Product-Exponential”, since it is obtained as the product of w by ew: 
(73)  y = w(y) . e w(y)       
Its inverse function:  w = w(y) 
Is the “Product-Logarithm”, “ProductLog” or  “Lambert’s Function”. From (73) we have then (and let’s call by z the result): 
  
(74)  w(y) / y = e - w(y) = z.      
Therefore, from (74), we may write:  1 / z = e w(y) , and : ln z =  - w(y) 
and, therefore, from (73):  (1 / z) . ln z =  - w(y) . e w(y) =  - y 
and, finally:  ln (z ^ (1 / z)) = - y 
i.e.: 

(75)  z ^ (1/z) = z z = e – y      

If now we put :  y =  - ln x 

we obtain, from (75) and (74):  x = z z ; z = - w(-ln x) / ln x      

  Sicut erat demonstrandum]. 
From the point of view of the graphs of function z = x # y, it should be investigated how, from the plot of fig. A2, a second 
value of z should suddenly appear, for 1 < x < g(e), as it is also expected from a “graphical inversion” of the plot of fig. A1 

(x →←  z).  Euler [15] and Eisenstein [13] have, however, also shown that all serial developments trying to approximate 
h(x) = - w(- ln x)/ ln x,  converge only for values of x such as: 
  g(1/ e) < x < g(e)     
  with:  x = g(1/ e) = e – e  = 0,065 988 804 … 
  for: z = 1 / e = 0,367 879 441 ... 
which are normally considered as the range of convergence of the “infinite towers”, i.e. for 

0,065 988 …. < x < 1,444 667 … .” 
 

A-07. “Mathematica” implementations of relevant functions. In some popular advanced mathematical software packages (for 
instance Mathematica of the Wolfram Research, Inc., software created by Dr Stephen Wolfram in 1987, see [3]), some of the 
operations and functions mentioned in this paper are already available or can easily be implemented. Already listed among 
the standard basic operations, we can mention ProductLog.  
Among those that can be implemented, we can consider the “tower function” (z = x # n, n ∈N) (from: [22]):  
 Tower [x_, n] : = Nest [Power [x, # ] &, 1, n]   
Another form of implementation could involve the tetration operation, as a function of two variables (z = x # y), which can be 
given by the following expression (from: [7], p. 2336): 
 Tetration [x_, y_]  : = Fold [Power [x, # ] &, 1, Table [x, (y)]]. 
Concerning the “super-exponential function, base e” (z = e # x, x∈N), the authors propose a very simple implementation: 
 SuperExp [x_]  : = Nest [Exp, 1, x]   
Concerning “zeration” (z = x ° y), the autors propose the following implementation (in two lines): 
 Zeration [x_, y_]    : = Max [x, y] + 1  / ;  x !=y 
 Zeration [x_, y_]    : = Max [x, y] + 2  / ;  x==y. 
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Concerning the super-square-root of a number (y = 2 x , x∈R, x > e -e), the authors propose: 

 SuperSqrt [x_] := Log [x] / ProductLog [Log [x]]. 
A-08. Algorithms for evaluating the superlog. During a discussion, in the framework of an Internet User Group, in August 
1999, Seth Russel and Clifford J. Nelson [23] proposed the following  “Mathematica” program for evaluating some of what, 
in this paper, we called the “right inverse hyperoperations”, particularly for ranks 1, 2 and 3:  

Clear[p] 
p[z_,z_] :=1 
p[0,_] :=1 
p[_,0] :=1 
p[z_,1] :=z 
p[z_,x_] :=1+p[f[z, x],x]  /; z>=x 

                                 p[z_,x_] :=1/p[x, z]  /; z<x 
The “key” function is f[z,x]. According to Russel and Nelson, we have the following situations: 

- if:     f[z_,x_]:= z - x  then:  p[z, x] = z / x 
- if:     f[z_,x_]:= z / x  then:  p[z, x] = Log[z] / Log[x] = Log[x, z] 
-       if:     f[z_,x_]:= Log[x, z]  then:  p[z, x] = Superlog[x, z]. 

Therefore, if f[z,x] is Log[z,x], the program should allow us to calculate the superlog of z, base x. However, at the s=3 rank 
level, the formula does not normally converge and Mathematica requires  a continuous increase of the “MaxExtraprecision”. 
NB: Prefix hyper-, in this paper, concerns each hyperoperation of the hierarchy (zeration, addition, multiplication, exponen-
tiation, tetration, pentation, etc.), disregarding its rank. Prefix super- is reserved to the hyperoperation of rank s=4 (tetration). 
 
A-09. Extension of tetration to the rationals. It is interesting to examine a strategy proposed for estimating the value of ex-
pressions such as z = a # (1/k).  
Somebody, for example, suggested that since: z = a · (1/2)  = a / 2 
is the unique solution of:   z + z =  z · 2 = a , 

and since everybody agrees that:  z = a ^ (1/2) = 2 a  
must be the unique solution of:  z ·  z =  z ^ 2 = a , 
we should hypothetically suppose that:  z = a # (1/2)  
could be the unique solution of:  z ^  z =  z # 2 = a .    (which cannot be taken for granted) 
Indeed, expression:    z ^  z =  z # 2 = a 

actually implies that:   z = 2 a = ssqrt a, 

but, unfortunately, we also have that:  z = a # (1/2) ≠ 2 a = ssqrt a. 

In other words, it is not demonstrated that ssqrt a should be equal to a-tower-(½) and, actually, this assumption is not ac-
ceptable.  
In fact, if we consider:   z = a # (1/n)  (for n ∈N) 
and, at the same time, if we hypothetically assume that it should also be:  

  z # n = a   =>    z = n a . 

then we should have:   lim[
n

a
→∞

# (1/n) ] = a # (1/∞) = a # 0 = 1 

but, also:     limn

n
a

→∞
= a∞ = a a . 

But, since we obviously know that:  a a ≠ 1  for:   a ≠ 1 and  a ≠ ∞. 

we must conclude that:   lim[
n

a
→∞

# (1/n) ] ≠ limn

n
a

→∞
 

and that, in general, we  have:   z = a # (1/n) ≠ n a         (for any n ∈N). 

Therefore, the above-mentioned hypothetical assumption cannot be accepted. Let us now examine the following table, which 
shows the hyperoperations of rank s, together with their respective unit elements εs , the first (left) inverse operations, or 
hyperroots, as well as the auto-hyperroots, coinciding with the unit elements (or unitary functions, in case for instance of 
z z = g(z)). 

 
s εs hyperoperation  hyperroot   auto-hyperroot 

 ____________________________________________________________________________________ 
0        - ∞  z = x °  n =>  x = z ° (-∞ ∆ n)        = z ∆ n  z ∆ z =  - ∞ 
1 0 z = x + n =>  x = z + (0 –  n)         = z – n   z – z  =    0 
2         1 z = x  ·  n =>  x = z  · (1  /  n)         = z  / n   z  / z  =    1 

3         n n        z = x ^  n =>  x = z ^ (log n
n n )   = n z     z z  = g(z) 

4        n n  z = x #  n =>  x = z # (slog n
n n ) = n z   z z  = γ(z) 
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As stipulated by classical Algebra, the hyperroot expression x = z ^  (log n 
n n ) = z ^  1/n = n z , for s=3, holds iff we admit 

that we can write n n = n 1/ n . The equivalent (homomorphic) formula, in case of s=4, should then indeed be as follows: 

     x = z # (slog n 
n n ) = n z  

As we have seen, however, this expression cannot be simplified. 

A-10. Left and right unit elements. Hyperoperations such as z = x s  y normally have two different unit elements, which 
happen to be identical only in the case when the hyperoperation is commutative, e.g. for the ranks s=0, s=1 and s=2.  

In general, we have:  z = εs s  a  = a  with  ε s : left unit element  

    z =  a s  ηs = a  with  η s : right unit element 

with:  εs = s-rank, a-th hyperroot(a)     =

( )s
a

a ,   (i.e.:  a ∆ a, a – a, a  / a, a a , a a , …) 

and:  ηs = s-rank, base a, hyperlog(a) =
( )

a
s

a ,  (i.e.:  a ∆ a, a – a, a  / a, log a a, slog a a, …). 

The following table shows the values of the left (hyperroot) and right (hyperlog) unit elements (and functions), for the levels 
of rank s = 0, 1, 2, 3, 4. 

 s     εs    εs s  a      ηs  a s  ηs   Comments 
 _______________________________________________________________________________________ 

0  - ∞ (- ∞)  °  a = a  - ∞ a ° (- ∞) = a  ε0  =  η0 
 1     0        0   +   a = a    0 a   +   0  = a  ε1  =  η1 
 2     1        1    ·    a = a    1 a    ·    1  = a  ε2  =  η2 

 3  a a       a a  ^   a = a    1 a   ^    1  = a  ε3  ≠  η3 

4  a a      a a #   a = a    1 a   #    1  = a  ε4  ≠  η4 

The left and right unit elements are identical (εs = ηs) for 0 ≤ s ≤ 2, because the respective hyperoperations are commutative. 
They are different (εs ≠ ηs) for s ≥ 3, when the hyperoperations are not commutative. Always for s ≥ 3, εs (the unitary func-
tion, the a-th hyperroot of a) is variable and ηs (the hyperlog, base a, of a) is constant and always equal to 1. This kind of left-
right asymmetry also depends on the adoption of the asymmetrical “priority to the right” rule of procedure. 
 
A-11. Some peculiarities. Simple numerical calculations using hyperoperations allows us to highlight some interesting pecu-
liarities.  

In fact, for s≥2, we always have: 1 ·  1 = 1 ^ 1 = 1 # 1 = ….. 1 s 1 = 1 
Instead, for s≤2, we have : 1 ·  1   = 1 
 1 + 1  = 2 
 1 °  1 = 3  (sic!) 

Moreover, we always have : 2 ° 2 = 2 + 2 = 2 · 2 = 2 ^ 2 = 2 # 2 = …. 2 s 2 = 4 . 

___________________
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